Commit 2b21516e
Changed files (1)
README.md
@@ -41,7 +41,7 @@ Data libraries like `numpy` and `pandas` are not installed by default due to the
```sh
pip install openai[datalib]
-````
+```
## Usage
@@ -63,16 +63,16 @@ models = openai.Model.list()
# print the first model's id
print(models.data[0].id)
-# create a completion
-completion = openai.Completion.create(model="ada", prompt="Hello world")
+# create a chat completion
+chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world"}])
-# print the completion
-print(completion.choices[0].text)
+# print the chat completion
+print(chat_completion.choices[0].message.content)
```
-
### Params
-All endpoints have a `.create` method that supports a `request_timeout` param. This param takes a `Union[float, Tuple[float, float]]` and will raise an `openai.error.Timeout` error if the request exceeds that time in seconds (See: https://requests.readthedocs.io/en/latest/user/quickstart/#timeouts).
+
+All endpoints have a `.create` method that supports a `request_timeout` param. This param takes a `Union[float, Tuple[float, float]]` and will raise an `openai.error.Timeout` error if the request exceeds that time in seconds (See: https://requests.readthedocs.io/en/latest/user/quickstart/#timeouts).
### Microsoft Azure Endpoints
@@ -86,24 +86,24 @@ openai.api_key = "..."
openai.api_base = "https://example-endpoint.openai.azure.com"
openai.api_version = "2023-03-15-preview"
-# create a completion
-completion = openai.Completion.create(deployment_id="deployment-name", prompt="Hello world")
+# create a chat completion
+chat_completion = openai.ChatCompletion.create(deployment_id="deployment-name", model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world"}])
# print the completion
-print(completion.choices[0].text)
+print(completion.choices[0].message.content)
```
Please note that for the moment, the Microsoft Azure endpoints can only be used for completion, embedding, and fine-tuning operations.
For a detailed example of how to use fine-tuning and other operations using Azure endpoints, please check out the following Jupyter notebooks:
-* [Using Azure completions](https://github.com/openai/openai-cookbook/tree/main/examples/azure/completions.ipynb)
-* [Using Azure fine-tuning](https://github.com/openai/openai-cookbook/tree/main/examples/azure/finetuning.ipynb)
-* [Using Azure embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/azure/embeddings.ipynb)
+
+- [Using Azure completions](https://github.com/openai/openai-cookbook/tree/main/examples/azure/completions.ipynb)
+- [Using Azure fine-tuning](https://github.com/openai/openai-cookbook/tree/main/examples/azure/finetuning.ipynb)
+- [Using Azure embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/azure/embeddings.ipynb)
### Microsoft Azure Active Directory Authentication
In order to use Microsoft Active Directory to authenticate to your Azure endpoint, you need to set the `api_type` to "azure_ad" and pass the acquired credential token to `api_key`. The rest of the parameters need to be set as specified in the previous section.
-
```python
from azure.identity import DefaultAzureCredential
import openai
@@ -120,6 +120,7 @@ openai.api_version = "2023-03-15-preview"
# ...
```
+
### Command-line interface
This library additionally provides an `openai` command-line utility
@@ -130,12 +131,12 @@ which makes it easy to interact with the API from your terminal. Run
# list models
openai api models.list
-# create a completion
-openai api completions.create -m ada -p "Hello world"
-
-# create a chat completion
+# create a chat completion (gpt-3.5-turbo, gpt-4, etc.)
openai api chat_completions.create -m gpt-3.5-turbo -g user "Hello world"
+# create a completion (text-davinci-003, text-davinci-002, ada, babbage, curie, davinci, etc.)
+openai api completions.create -m ada -p "Hello world"
+
# generate images via DALL·E API
openai api image.create -p "two dogs playing chess, cartoon" -n 1
@@ -147,18 +148,18 @@ openai --proxy=http://proxy.com api models.list
Examples of how to use this Python library to accomplish various tasks can be found in the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/). It contains code examples for:
-* Classification using fine-tuning
-* Clustering
-* Code search
-* Customizing embeddings
-* Question answering from a corpus of documents
-* Recommendations
-* Visualization of embeddings
-* And more
+- Classification using fine-tuning
+- Clustering
+- Code search
+- Customizing embeddings
+- Question answering from a corpus of documents
+- Recommendations
+- Visualization of embeddings
+- And more
Prior to July 2022, this OpenAI Python library hosted code examples in its examples folder, but since then all examples have been migrated to the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/).
-### Chat
+### Chat Completions
Conversational models such as `gpt-3.5-turbo` can be called using the chat completions endpoint.
@@ -166,10 +167,22 @@ Conversational models such as `gpt-3.5-turbo` can be called using the chat compl
import openai
openai.api_key = "sk-..." # supply your API key however you choose
-completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world!"}])
+completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world"}])
print(completion.choices[0].message.content)
```
+### Completions
+
+Text models such as `text-davinci-003`, `text-davinci-002` and earlier (`ada`, `babbage`, `curie`, `davinci`, etc.) can be called using the completions endpoint.
+
+```python
+import openai
+openai.api_key = "sk-..." # supply your API key however you choose
+
+completion = openai.Completion.create(model="text-davinci-003", prompt="Hello world")
+print(completion.choices[0].text)
+```
+
### Embeddings
In the OpenAI Python library, an embedding represents a text string as a fixed-length vector of floating point numbers. Embeddings are designed to measure the similarity or relevance between text strings.
@@ -248,6 +261,7 @@ image_resp = openai.Image.create(prompt="two dogs playing chess, oil painting",
```
## Audio transcription (Whisper)
+
```python
import openai
openai.api_key = "sk-..." # supply your API key however you choose
@@ -264,13 +278,13 @@ Async support is available in the API by prepending `a` to a network-bound metho
import openai
openai.api_key = "sk-..." # supply your API key however you choose
-async def create_completion():
- completion_resp = await openai.Completion.acreate(prompt="This is a test", model="davinci")
+async def create_chat_completion():
+ chat_completion_resp = await openai.ChatCompletion.acreate(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world"}])
```
To make async requests more efficient, you can pass in your own
-``aiohttp.ClientSession``, but you must manually close the client session at the end
+`aiohttp.ClientSession`, but you must manually close the client session at the end
of your program/event loop:
```python